

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS

PRODUCT SPECIFICATION

規格書

CUSTOMER: DATE:

(客戶): (日期):2018-12-25

CATEGORY (品名) : ALUMINUM ELECTROLYTIC CAPACITORS

DESCRIPTION (型号) : SK 63V330μF(φ10X20)

VERSION (版本) : 01

Customer P/N :

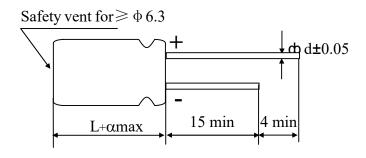
SUPPLIER :

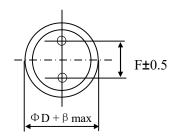
SUPPL	IER
PREPARED (拟定)	CHECKED (审核)
孟庆庆	付婷婷

CUSTO	OMER
APPROVAL	SIGNATURE
(批准)	(签名)

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

		SPECIFICAT			ALTERNA	ATION HIS' ECORDS	ΓORY
D	D. /	SK SERIE	S	G 4 4			A
Rev.	Date	Mark	Page	Contents	Purpose	Drafter	Approver


Version 01 Page 1


ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

Table 1 Product Dimensions and Characteristics

Unit: mm

α	L<20 : α=1.5; L≥20 : α=2.0
β	$\Phi D < 20 : \beta = 0.5; \Phi D \ge 20 : \beta = 1.0$

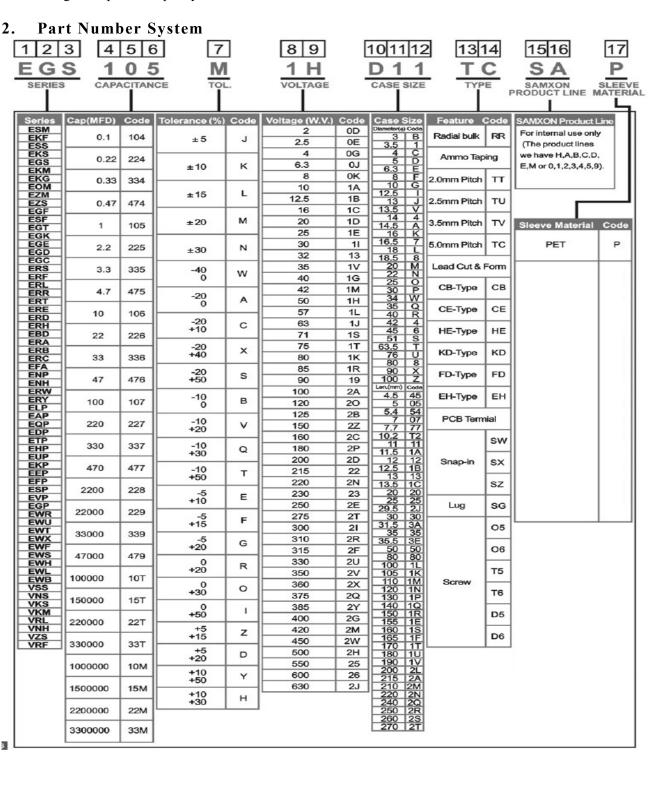
* If it is flat rubber, there is no bulge from the flat rubber surface.

N	SAMXON	WV	Cap.	Con talamana	Temp.	tanδ (120Hz,	Leakage	Max Ripple Current at 105°C	Impedance at 20°C	Load lifetime		ension (mm)		Sleeve
ο.	Part No.	(Vdc)	(μF)	Cap. tolerance	range(°C)	20°C)	Current (µA,2min)	100KHz (mA rms)	100kHz (Ωmax)	(Hrs)	D×L	F	фd	Sieeve
1	ESK337M1JG20RR**P-R	63	330	-20%~+20%	-40~105	0.09	207.9	1570	0.056	10000	10X20	5.0	0.6	PET

|--|

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

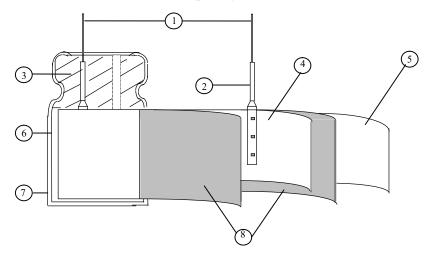

CONTENTS **Sheet** 4 Application 1. 2. Part Number System 4 3. Construction 5 4. Characteristics 5~10 4.1 Rated voltage & Surge voltage 4.2 Capacitance (Tolerance) 4.3 Leakage current 4.4 tan δ 4.5 Terminal strength 4.6 Temperature characteristic 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 11 Substances')" **Attachment: Application Guidelines** 12~15

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

1. Application

This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.



ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	PET
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature :15°C to 35°C
Relative humidity : 45% to 85%
Air Pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature $: 20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air Pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version 01		Page	5
------------	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

	ITEM				PERFC	RMANO	CE			
	Rated voltage									
	(WV)	WV (V.DC)	6.3	10	16	25	35	50	63	100
4.1		SV (V.DC)	8	13	20	32	44	63	79	125
	Surge voltage (SV)									
4.2	Nominal capacitance (Tolerance)	<pre><condition> Measuring F Measuring V Measuring T </condition></pre> <pre><criteria> Shall be with</criteria></pre>	requenc oltage emperat	: N cure : 20)±2℃	than 0.5V				
4.3	Leakage current	Condition> Connecting t minutes, and Criteria> Refer to Table	then, me		_		sistor (1	k Ω ±10	Ω) in s	eries for
4.4	tan δ	<condition> See 4.2, Norr <criteria> Refer to Table</criteria></condition>	n Capac	ritance, fo	or measu	ring frequ	iency, vo	oltage and	d tempera	ature.
4.5	Terminal strength		ength of apacitor rength of apacitor, 2~3 second rength of apacitor, 2~3 second rength of learning rength ren	f Termina applied f onds, and	force to als. Force to be then ber	ent the tent it for 9	erminal (1	1~4 mm toriginal p Bending	from the position street of the position street of the position street of the position of the	rubber) f
	Suchgui		nm and 1 5mm to			5 (0.51) 0 (1.0)		2.5 (0	0.25)	
		<criteri< td=""><td>a></td><td>nanges sh</td><td>1</td><td>` ` `</td><td>reakage</td><td></td><td></td><td>e termina</td></criteri<>	a>	nanges sh	1	` ` `	reakage			e termina

Version 01	Page	6
------------	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

		<condition></condition>								
		STEP	Testing T	Tempera	ature(°C)		Time		
		1		20±2		Time	to reach	thermal eq	uilibriur	n
		2		-25 ± 3		Time	to reach	thermal ec	uilibriur	n
		3		20 ± 2				thermal ec		
		4		105 ± 2				thermal ec		
		5		$\frac{100 \pm 2}{20 \pm 2}$		_		thermal ec		
	Temperature	<criteria></criteria>		20 - 2		7 11110	, to reach	unorman oc	umoma	
	characteristi		hall be with	hin the	limit of	Item 4.4				
1.6	cs		akage curre				more than	n 8 times	of its sp	ecifie
		value.	8						1	
		b. In step	5, tan δ sha	all be w	ithin the	limit of	Item 4.4			
		b. At-25℃,	impedance	(Z) rati	io shall 1	not excee	ed the valu	ie of the fo	ollowing	table.
		Working Volta	ge (V)	6.3	10	16	25	35	50	63
		Z-25°C/Z+2	0℃	2	2	2	2	2	2	2
		<condition></condition>								
		Accordin	ng to IEC60				-			
		at a temperature of 105° C ± 2 with DC bias voltage plus the rated ripple current for Table1. (The sum of DC and ripple peak voltage shall not exceed the rated								
		working voltage) Then the product should be tested after 16 hours recovering								
	T 1	time at atmospheric conditions.								
17	Load life	The result should meet the following table:								
4./	IIIC	<criteria></criteria>								
4.7	test	<criteri< td=""><td>a></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></criteri<>	a>							
	test	<criteri char<="" td="" the=""><td>a> acteristic s</td><td>hall me</td><td>et the fo</td><td>llowing</td><td>requireme</td><td></td><td></td><td></td></criteri>	a> acteristic s	hall me	et the fo	llowing	requireme			
	test	<criteri char="" leakag<="" td="" the=""><td>a> acteristic s e current</td><td>hall me</td><td>et the fo</td><td>llowing</td><td>requireme be satisfie</td><td>d</td><td></td><td></td></criteri>	a> acteristic s e current	hall me	et the fo	llowing	requireme be satisfie	d		
	test	Criteri The char Leakag Capacit	a> acteristic s	hall me V ge W	et the for alue in 4 Vithin ±	llowing 1.3 shall 25% of	requireme be satisfie initial val	d ue(6.3,10\		0%)
	test	<criteri char="" leakag<="" td="" the=""><td>a> acteristic s e current</td><td>hall me V ge W</td><td>et the for alue in 4 Vithin ±</td><td>llowing 1.3 shall 25% of</td><td>requireme be satisfie initial val</td><td>d</td><td></td><td>0%)</td></criteri>	a> acteristic s e current	hall me V ge W	et the for alue in 4 Vithin ±	llowing 1.3 shall 25% of	requireme be satisfie initial val	d		0%)
	test	Criteri The char Leakag Capacit	a> acteristic s e current tance Chan	hall me V age W	eet the for alue in 4 Vithin ± ot more	llowing 1.3 shall 25% of than 200	requirements be satisfied initial value. 10% of the second control of the second contro	d ue(6.3,10\	alue.	0%)
	test	Criteri The char Leakag Capacit tan δ Appear	a> acteristic s e current tance Chan	hall me V age W	eet the for alue in 4 Vithin ± ot more	llowing 1.3 shall 25% of than 200	requirements be satisfied initial value. 10% of the second control of the second contro	d ue(6.3,10\ specified \	alue.	0%)
	test	Criteri The char Leakag Capacit tan δ Appear	a> acteristic s e current tance Chan	hall me V age W N	ret the for alue in 4 // ithin ± ot more There sha	llowing 1.3 shall 25% of than 200 all be no	requireme be satisfie initial val 10% of the leakage o	d ue(6.3,10\ specified \ f electroly	value. te.	
	test	Criteri The char Leakag Capacit tan δ Appear Condition> The capac	a> acteristic s e current tance Chan ance	hall me V uge W N T	ret the for alue in 4 // ithin ± ot more There sha	llowing 1.3 shall 25% of than 200 all be no	requireme be satisfie initial val 10% of the leakage o	d ue(6.3,10\ specified \ f electroly	value. te.	
	test	Criteri The char Leakag Capacit tan δ Appear Condition> The capac 2°C for 10	a> cacteristic si e current tance Chan ance	hall me V ge W N T	ret the for alue in 4 // ithin ± for more there shared with r	llowing 1.3 shall 25% of than 200 all be no	requirements be satisfied initial value of the satisfied leakage of the satisfied applied to the satisfied satisfied to the satisfied satisfied to the satisfied satisfied satisfied to the satisfied satisfie	d ue(6.3,10V) specified v f electroly at a temper	value. te. erature o	f 105 :
	Shelf	Criteri The char Leakag Capacit tan δ Appear Condition> The capac 2°C for 10 Following be allowe	a> acteristic s e current tance Chan ance itors are the 000+48/0 h g this period d to stabiliz	hall me V ge W N T en store ours. d the ca	ret the for alue in 4 // ithin ± for more here shared with repacitors oom terr	llowing 1.3 shall 25% of than 200 all be no no voltag shall be uperature	requirements be satisfied initial values of the seleakage of the applied removed at for 4~8 h	d ue(6.3,10) specified v f electroly at a temporary from the tours.	value. te. erature o est cham	f 105 :
4.8	Shelf life	Criteri The char Leakag Capacit tan δ Appear Condition> The capac 2°C for 10 Following be allowe Next they	a> acteristic s e current tance Chan ance itors are the 000+48/0 h g this period d to stabiliz shall be co	hall me Vage Ware N T en store ours. d the cazed at roonnected	ret the for alue in 4 / / / / / / / / / / / / / / / / / /	llowing 1.3 shall 25% of than 200 all be no ao voltag shall be aperature eries lim	requirements be satisfied initial values of the satisfied leakage of the applied removed for 4~8 holiting resis	tor(1k±1	value. te. erature o est cham 00 Ω) wi	f 105 : aber an
4.8	Shelf	Criteri The char Leakag Capacit tan δ Appear Condition> The capac 2°C for 10 Following be allowe Next they rated voltage	a> acteristic s e current tance Chan eance itors are the 000+48/0 he g this period d to stabiliz shall be co	hall me V ge W N T en store ours. d the ca zed at re onnected	ret the foral line in 4 vithin ± vithin	llowing 1.3 shall 25% of than 200 all be no ao voltag shall be aperature eries lim	requirements be satisfied initial values of the satisfied leakage of the applied removed for 4~8 holiting resis	tor(1k±1	value. te. erature o est cham 00 Ω) wi	f 105 =
4.8	Shelf life	Criteri The char Leakag Capacit tan δ Appear Condition> The capac 2°C for 10 Following be allowe Next they rated voltage	a> acteristic s e current tance Chan ance itors are the 000+48/0 h g this period d to stabiliz shall be co	hall me V ge W N T en store ours. d the ca zed at re onnected	ret the foral line in 4 vithin ± vithin	llowing 1.3 shall 25% of than 200 all be no ao voltag shall be aperature eries lim	requirements be satisfied initial values of the satisfied leakage of the applied removed for 4~8 holiting resis	tor(1k±1	value. te. erature o est cham 00 Ω) wi	f 105 =
4.8	Shelf life	Criteri The char Leakag Capacit tan δ Appear Condition> The capac 2°C for 10 Following be allowe Next they rated voltage	a> acteristic s e current tance Chan eance itors are the 000+48/0 he g this period d to stabiliz shall be co	hall me V ge W N T en store ours. d the ca zed at re onnected	ret the foral line in 4 vithin ± vithin	llowing 1.3 shall 25% of than 200 all be no as voltag shall be aperature eries lim	requirements be satisfied initial values of the satisfied leakage of the applied removed for 4~8 holiting resis	tor(1k±1	value. te. erature o est cham 00 Ω) wi	f 105 =

Version	01		Page	7	ĺ
---------	----	--	------	---	---

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

		<criteria></criteria>						
		The characteristic shall r	neet the following requirements.					
		Leakage current	Value in 4.3 shall be satisfied					
	Shelf	Capacitance Change	Within $\pm 25\%$ of initial value(6.3,10V: $\leq \pm 30\%$)					
4.8	life	tan δ	Not more than 200% of the specified value.					
	test	Appearance	There shall be no leakage of electrolyte.					
			stored more than 1 year, the leakage current may					
		_	e through about 1 k Ω resistor, if necessary.					
		<condition></condition>	, ,					
		Applied a surge voltage to th	e capacitor connected with a $(100 \pm 50)/C_R (k\Omega)$ resistor.					
		The capacitor shall be submi	tted to 1000 cycles, each consisting of charge of $30 \pm 5s$,					
		followed discharge of 5 min						
		The test temperature shall be						
		C _R :Nominal Capacitance (μF)					
4.0	Surge	<criteria></criteria>						
4.9	test	Leakage current	Not more than the specified value.					
		Capacitance Change	Within $\pm 15\%$ of initial value.					
		tan δ	Not more than the specified value.					
		Appearance	There shall be no leakage of electrolyte.					
		Attention:						
		This test simulates over voltage at abnormal situation only. It is not applicable to such						
		over voltage as often applied	l.					
4.10	Vibration test	perpendicular directions. Vibration frequency ra Peak to peak amplitud Sweep rate Mounting method:	e : 1.5mm : 10Hz ~ 55Hz ~ 10Hz in about 1 minute greater than 12.5mm or longer than 25mm must be fixed Within 30°					
		Appearance	items shall be tested: No intermittent contacts, open or short circuiting. No damage of tab terminals or electrodes. No mechanical damage in terminal. No leakage of electrolyte or swelling of the case. The markings shall be legible.					

Version	01		Page	8
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

		<condition></condition>			
		The capacitor shall be tes	ted under the foll	owing conditions:	
		Soldering temperature	: 245		
		Dipping depth	: 2mr		
4.11	Solderability	Dipping speed		2.5mm/s	
	test	Dipping time	: 3±0	.5s	
		<criteria></criteria>			
		Coating quality		inimum of 95% of the surface be ersed	eing
		2C . 12C			
		<condition></condition>	citor shall be imm	ersed into solder bath at	
		•		$^{\circ}$ C for 3 $^{+1}_{-0}$ seconds to 1.5~2.0mm	fuore the
			conds or 400±10	$\sim 1073_{-0}$ seconds to 1.3~2.0mm	i from the
		body of capacitor.	11.1.6.1.4	1, , 1	1 '1'4
	Resistance to	for 1~2 hours before n		normal temperature and normal	numiaity
4.12	solder heat	<pre><criteria></criteria></pre>	neasurement.		
	test	Leakage current	Not more	than the specified value.	
		Capacitance Change	Within ±	10% of initial value.	
		tan δ	Not more	than the specified value.	
		Appearance	There sha	all be no leakage of electrolyte.	
		<condition></condition>			
				4-4No.4.7methods, capacitor sh	all be
		placed in an oven, the cor			
			emperature	Time	
		(1)+20°C		≤ 3 Minutes	
	Change of	(2)Rated low temper	ature (-40°C) (-25	$^{\circ}$ C) 30±2 Minutes	
4.13	temperature	(3)Rated high temper	rature (+105°C)	30±2 Minutes	
	test	(1) to (3)=1 cycle, to	tal 5 cycle		
		<criteria></criteria>			
		The characteristic shall m	eet the following	requirement	
		Leakage current	Not more that	n the specified value.	
		tan 8	Not more that	n the specified value.	
		Appearance	There shall b	e no leakage of electrolyte.	
		<condition></condition>			
		Humidity Test:			
		_		s, capacitor shall be exposed for	
		-		40 ± 2 °C, the characteristic char	nge shall
		meet the following requir	ement.		
	D 1	<criteria></criteria>	Not more than t	he specified value	
4.14	Damp heat	Leakage current		he specified value.	
	test	Capacitance Change tan δ	Within ±20%		
ļ				20% of the specified value.	
	i l	Appearance	1 mere snam be r	o leakage of electrolyte.	

Version	01		Page	9
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

4.15	Vent	22.4 or less	ith its polar able is applerrent (A) 1 10 dangerous	rity reversed ied.	l to a DC p	ower source	. Then
		Condition> The maximum permissible ri at 120Hz and can be applied Table-1 The combined value of D.C rated voltage and shall not r Frequency Multipliers: Coefficient Freq. (Hz)	l at maximi voltage an	um operatin	g temperatı	ıre	ceed th
	Maximum	Cap. (µ F)					
4.16	permissible	33~270	0.50	0.73	0.92	1.00	
4.10	(ripple current)	330~680	0.55	0.77	0.94	1.00	
	currenty	820~1800 2200~8200	0.60	0.80	0.96 0.98	1.00	

Version 0) [Page	10
-----------	-----	--	------	----

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances
	Cadmium and cadmium compounds
Heavy metals	Lead and lead compounds
Ticavy metais	Mercury and mercury compounds
	Hexavalent chromium compounds
	Polychlorinated biphenyls (PCB)
Chloinated	Polychlorinated naphthalenes (PCN)
organic	Polychlorinated terphenyls (PCT)
compounds	Short-chain chlorinated paraffins(SCCP)
	Other chlorinated organic compounds
D 1	Polybrominated biphenyls (PBB)
Brominated .	Polybrominated diphenylethers(PBDE) (including
organic	decabromodiphenyl ether[DecaBDE])
compounds	Other brominated organic compounds
Tributyltin comp	ounds(TBT)
Triphenyltin com	npounds(TPT)
Asbestos	
Specific azo com	pounds
Formaldehyde	
Beryllium oxide	
Beryllium copp	er
Specific phthalat	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)
Perfluorooctane s	sulfonates (PFOS)
Specific Benzotr	iazole

Version	01		Page	11	l
---------	----	--	------	----	---

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

Attachment: Application Guidelines

1.Circuit Design

1.1 Operating Temperature and Frequency

Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.

- 1) Effects of operating temperature on electrical parameters
 - a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tanδ increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).

1.2 Operating Temperature and Life Expectancy

See the file: Life calculation of aluminum electrolytic capacitor

1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

1.4 Using Two or More Capacitors in Series or Parallel

(1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

1.5 Capacitor Mounting Considerations

(1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2) Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~φ16mm:2mm minimum, φ18~φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

(5) Clearance for Seal Mounted Pressure Relief Vents

A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version 01		Page	12
------------	--	------	----

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

(6) Wiring Near the Pressure Relief Vent

Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite.

(7) Circuit Board patterns Under the Capacitor

Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short.

(8) Screw Terminal Capacitor Mounting

Do not orient the capacitor with the screw terminal side of the capacitor facing downwards.

Tighten the terminal and mounting bracket screws within the torque range specified in the specification.

1.6 Electrical Isolation of the Capacitor

Completely isolate the capacitor as follows.

- (1) Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths
- (2) Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
- 1.7 The Product endurance should take the sample as the standard.
- 1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.

1.9 Capacitor Sleeve

The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor.

The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.

CAUTION!

Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use.

- (1) Provide protection circuits and protection devices to allow safe failure modes.
- (2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.

2. Capacitor Handling Techniques

- 2.1 Considerations Before Using
- (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment.
- (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about 1kΩ.
- (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $1k\Omega$.
- (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.
- (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result.

2.2 Capacitor Insertion

- (1) Verify the correct capacitance and rated voltage of the capacitor.
- (2) Verify the correct polarity of the capacitor before inserting.
- (3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.
- (4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor.

For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.

2.3 Manual Soldering

- (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less.
- (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.
- (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads.
- (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.

2.4 Flow Soldering

- (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.
- (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.

2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

Version 01 Page 13

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

- 2.6 Capacitor Handling after Solder
- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.

2.7 Circuit Board Cleaning

- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

Alkali solvents : could attack and dissolve the aluminum case.

Petroleum based solvents: deterioration of the rubber seal could result.

Xylene : deterioration of the rubber seal could result.

Acetone : removal of the ink markings on the vinyl sleeve could result.

- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

Capacitors should not be stored or used in the following environments.

- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures.

If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.

If electrolyte or gas is ingested by month, gargle with water.

If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes . If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

Version	01		Page	14
---------	----	--	------	----

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

The capacitor shall be not use in the following condition:

- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Version	01		Page	15	l
---------	----	--	------	----	---